氮化镓功率器件在阵列雷达系统中的应用选取

  通过阵列雷达对收发系统的要求可见,对于氮化镓功率器件在阵列雷达收发系统中如何应用,选择哪一类放大器的偏置,采用哪一种外围电路等与此息息相关。同时许多要求与实现方式又是环环相扣,有时不得折中考虑,以下主要从放大器工作类型、偏置电路和调制电路的选取加以分析。
 氮化镓芯片
 
  (1)放大器工作类型的选取
  在S 波段频率范围内的硅双极晶体管(BJT)通常为C 类自偏置工作,晶体管只需要一个集电极电压,当输入端的射频摆动电压超过发射极-基极结的内电位时,晶体管才吸取集电极电流,其集电极电流受到基极-发射极结之间流动的电流所控制。当雷达处于接收状态时,器件未被驱动,此时放大器不吸取静态直流电流,放大器没有功率耗散,处于截至状态,这类放大器特别适合阵列雷达收发系统的应用。电路简单,尤其是不需多加处理就可实现脉间噪声小这一要求,但这类放大器同时也存在弊端,与GaN HEMT 相比,工作频率较低,单级增益小,附加效率不高,不能在长脉宽、高占空比状态下使用。与BJT 不同的是GaN HEMT 通常偏置在A 类或AB 类工作,其偏置状态受栅源之间的偏置电压控制,属电压控制器件。这种工作方式对小信号仍有较高的增益,而阵列雷达发射和接收通路之间虽有一定的隔离度,但产生的漏信号经过多级联放大后,能量被放大致使雷达无法正常工作。因此,需要从偏置状态和电源调制来考虑解决这一问题。
 
  (2)电源调制电路的选取
  GaN HEMT 和GaAs FET 类似,栅极为负偏电压,采用漏极电源调制的方式,在接收期间关断放大器的电源,来确保雷达接收期间噪声要求,即脉间噪声。GaN HEMT 漏极工作电压高,输出功率大,因此,完全借鉴GaAs FET 的使用经验,是不够的,甚至出现系统不能正常工作。在GaAs FET作发射使用时,发射功率不高(通常在瓦级),环路增益相对较低,通过射频开关可以实现较好的收发隔离。而采用了GaN HEMT 通常发射功率很大(百瓦级以上),如果每级放大都偏置在A 类工作时,环路小信号增益非常高,在高集成的收发系统中收发隔离度难以控制,微小的扰动可以引起收发系统不稳定,因此在用GaN HEMT 实现发射级联时,需要适当调整偏置状态来控制小信号的增益来保证雷达收发系统稳定工作。偏向B 类C类工作时,静态电流会减小,增益降低,采用漏极电源调时,静态电流的减小还可导致脉冲的下降沿变差,在雷达PD 处理时下降沿变差等于增加了模糊距离,也是系统难以接受的,因此可采取部分偏C类工作和部分A 类漏极电源调制工作相结合,综合考虑小信号增益,下降沿时间和脉间噪声,找出合适的平衡点是关键。
 
  可靠应用氮化镓功率器件途径
  提高GaN HEMT 的击穿电压、减小高工作电压下器件的射频电流偏移是提高GaN HEMT 可靠工作的有效途径。GaN HEMT 制作中提高器件击穿电压的一个重要措施就是在栅上引入场调制板(Field-Modulation Plate)等专门技术,场板的引入能有效降低栅极在漏端附近的电场强度,从而提高器件的击穿电压。脉冲工作的发射放大器会消耗很大的直流电流,设计时需要特别注意漏极偏置的寄生电感,因为它能产生很高的电压尖峰,从而导致GaN HEMT损坏。

相关阅读